Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.10.09.561473

ABSTRACT

To assess the role of the Omicron BA.1 Spike (S) protein in the pathogenesis of the severe acute respiratory coronavirus 2 (SARS-CoV-2), we generated recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 S gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 strain genome. The recombinant viruses were characterized in vitro and in vivo. Viral entry, cell-cell fusion, viral plaque size, and viral replication kinetics of the rWA1-Omi-S virus were markedly impaired when compared to the rWA1-D614G virus, demonstrating a lower fusogenicity and ability to spread cell-to-cell of rWA1-Omi-S. To assess the contribution of the Omicron BA.1 S protein to SARS-CoV-2 pathogenesis the pathogenicity of rWA1-D614G and rWA1-Omi-S viruses were compared using a feline model of infection. While the rWA1-D614G-inoculated cats became lethargic and showed increased body temperatures on days 2 and 3 post-infection (pi), rWA1-Omi-S-inoculated cats remained subclinical and gained weight throughout the 14-day experimental period. Animals inoculated with rWA1-D614G presented higher levels of infectious virus shedding in nasal secretions, when compared to rWA1-Omi-S-inoculated animals. In addition, tissue replication of the rWA1-Omi-S was markedly reduced compared to the rWA1-D614G, as evidenced by lower in situ viral RNA and lower viral load in tissues on days 3 and 5 pi. Histologic examination of the nasal turbinate and lungs revealed intense inflammatory infiltration in rWA1-D614G-inoculated animals, whereas rWA1-Omi-S-inoculated cats presented only mild to modest inflammation. Together, these results demonstrate that the S protein is a major virulence determinant for SARS-CoV-2 playing a major role for the attenuated phenotype of the Omicron virus.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , Inflammation
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.06.21.23291564

ABSTRACT

In this study, we evaluated the seroprevalence of SARS-CoV-2 antibodies in Illinois household cats from October 2021 to May 2023. Among 1,715 samples tested by serological assays, 244 samples (14%) tested positive. High-rate temporal, spatial, and space-time clusters of SARS-CoV-2 cases were assessed within 63 counties in Illinois. Three space-time clusters with higher than expected seroprevalence rates were identified in the northeastern, central-east, and southwest regions of Illinois, occurring between June and October 2022. Young cats had a higher rate of seropositivity compared to older cats, and the third quarter of the year had the highest seropositivity rate. This study provides an in-depth analysis of SARS-CoV-2 epidemiology in Illinois household cats, which will aid in COVID-19 control and prevention.


Subject(s)
COVID-19
3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.03.11.532204

ABSTRACT

The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant threat to public health. Besides humans, SARS-CoV-2 can infect several animal species. Highly sensitive and specific diagnostic reagents and assays are urgently needed for rapid detection and implementation of strategies for prevention and control of the infection in animals. In this study, we initially developed a panel of monoclonal antibodies (mAbs) against SARS-CoV-2 nucleocapsid (N) protein. To detect SARS-CoV-2 antibodies in a broad spectrum of animal species, a mAb-based bELISA was developed. Test validation using a set of animal serum samples with known infection status obtained an optimal percentage of inhibition (PI) cut-off value of 17.6% with diagnostic sensitivity of 97.8% and diagnostic specificity of 98.9%. The assay demonstrates high repeatability as determined by a low coefficient of variation (7.23%, 6.95%, and 5.15%) between-runs, within-run, and within-plate, respectively. Testing of samples collected over time from experimentally infected cats showed that the bELISA was able to detect seroconversion as early as 7 days post-infection. Subsequently, the bELISA was applied for testing pet animals with COVID-19-like symptoms and specific antibody responses were detected in two dogs. The panel of mAbs generated in this study provides a valuable tool for SARS-CoV-2 diagnostics and research. The mAb-based bELISA provides a serological test in aid of COVID-19 surveillance in animals.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
4.
preprints.org; 2022.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202210.0087.v1

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has caused more than 600 million cases and over 6 million deaths worldwide. Vaccination has been the main strategy used to contain the spread of the virus, and to avoid hospitalizations and deaths. Currently, there are two mRNA-based and one adenovirus vectored vaccines approved and available for use in the U.S. population. The versatility, low cost and rapid-to-manufacture attributes of DNA vaccines are important advantages over other platforms. However, DNA vaccination must meet higher efficiency levels for use in humans. Importantly, in vivo DNA delivery combined with electroporation (EP) has been successfully used in the veterinary field. Here we evaluated the safety, immunogenicity and protective efficacy of a novel linear SARS-CoV-2 DNA vaccine candidate for delivered by intramuscular injection followed by electroporation (Vet-ePorator™) in ferrets. The results demonstrated that the linear SARS-CoV-2 DNA vaccine candidate did not cause unexpected side effects, and was able to elicit neutralizing antibodies and T cell responses using a low dose of the linear DNA construct in prime-boost regimen, and significantly reduced shedding of infectious SARS-CoV-2 through oral and nasal secretions in a ferret model.


Subject(s)
COVID-19
5.
preprints.org; 2022.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202210.0102.v1

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has caused more than 600 million cases and over 6 million deaths worldwide. Vaccination has been the main strategy used to contain the spread of the virus, and to avoid hospitalizations and deaths. Currently, there are two mRNA-based and one adenovirus vectored vaccines approved and available for use in the U.S. population. The versatility, low cost and rapid-to-manufacture attributes of DNA vaccines are important advantages over other platforms. However, DNA vaccination must meet higher efficiency levels for use in humans. Importantly, in vivo DNA delivery combined with electroporation (EP) has been successfully used in the veterinary field. Here we evaluated the safety, immunogenicity and protective efficacy of a novel linear SARS-CoV-2 DNA vaccine candidate for delivered by intramuscular injection followed by electroporation (Vet-ePorator™) in ferrets. The results demonstrated that the linear SARS-CoV-2 DNA vaccine candidate did not cause unexpected side effects, and was able to elicit neutralizing antibodies and T cell responses using a low dose of the linear DNA construct in prime-boost regimen, and significantly reduced shedding of infectious SARS-CoV-2 through oral and nasal secretions in a ferret model.


Subject(s)
COVID-19
6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.29.510112

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has caused more than 600 million cases and over 6 million deaths worldwide. Vaccination has been the main strategy used to contain the spread of the virus, and to avoid hospitalizations and deaths. Currently, there are two mRNA-based and one adenovirus vectored vaccines approved and available for use in the U.S. population. The versatility, low cost and rapid-to-manufacture attributes of DNA vaccines are important advantages over other platforms. However, DNA vaccination must meet higher efficiency levels for use in humans. Importantly, in vivo DNA delivery combined with electroporation (EP) has been successfully used in the veterinary field. Here we evaluated the safety, immunogenicity and protective efficacy of a novel linear SARS-CoV-2 DNA vaccine candidate for delivered by intramuscular injection followed by electroporation (Vet-ePorator) in ferrets. The results demonstrated that the linear SARS-CoV-2 DNA vaccine candidate did not cause unexpected side effects, and was able to elicit neutralizing antibodies and T cell responses using a low dose of the linear DNA construct in prime-boost regimen, and significantly reduced shedding of infectious SARS-CoV-2 through oral and nasal secretions in a ferret model.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
7.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.02.506368

ABSTRACT

The spillover of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans into white-tailed deer (WTD) and its ability to transmit from deer-to-deer raised concerns about the role of WTD in the epidemiology and ecology of the virus. In the present study, we conducted a comprehensive investigation to assess the prevalence, genetic diversity, and evolution of SARS-CoV-2 in WTD in the State of New York (NY). A total of 5,462 retropharyngeal lymph node (RPLN) samples collected from free-ranging hunter-harvested WTD during the hunting seasons of 2020 (Season 1, September-December 2020, n=2,700) and 2021 (Season 2, September-December 2021, n=2,762) were tested by SARS-CoV-2 real-time RT-PCR. SARS-CoV-2 RNA was detected in 17 samples (0.6%) from Season 1 and in 583 (21.1%) samples from Season 2. Hotspots of infection were identified in multiple confined geographic areas of NY. Sequence analysis of SARS-CoV-2 genomes from 164 samples demonstrated the presence multipls SARS-CoV-2 lineages as well as the co-circulation of three major variants of concern (VOCs) (Alpha, Gamma, and Delta) in WTD. Our analysis suggests the occurrence of multiple spillover events (human-to-deer) of the Alpha and Delta lineages with subsequent deer-to-deer transmission of the viruses. Detection of Alpha and Gamma variants in WTD long after their broad circulation in humans in NY suggests that WTD may serve as a wildlife reservoir for VOCs no longer circulating in humans. Thus, implementation of continuous surveillance programs to monitor SARS-CoV-2 dynamics in WTD are warranted, and measures to minimize virus transmission between humans and animals are urgently needed. SIGNIFICANCEWhite-tailed deer (WTD) are highly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and are known to efficiently transmit the virus to other susceptible animals. Evidence of natural exposure or infection of wild WTD in North America raised significant concerns about their role on the ecology of the virus and its impact on the control of the coronavirus disease 2019 (COVID-19) pandemic. This comprehensive study demonstrates widespread infection of SARS-CoV-2 in the WTD populations across the State of New York. Additionally, we showed co-circulation of three major SARS-CoV-2 variants of concern (VOCs) in this wildlife population, long after their broad circulation in humans. These findings indicate that WTD - the most abundant large mammal in North America - may serve as a reservoir for variant SARS-CoV-2 strains that no longer circulate in the human population.


Subject(s)
Coronavirus Infections , Tuberculosis, Lymph Node , COVID-19
8.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.15.496220

ABSTRACT

Omicron (B.1.1.529) is the most recent SARS-CoV-2 variant of concern (VOC), which emerged in late 2021 and rapidly achieved global predominance in early 2022. In this study, we compared the infection dynamics, tissue tropism and pathogenesis and pathogenicity of SARS-CoV-2 D614G (B.1), Delta (B.1.617.2) and Omicron BA.1.1 sublineage (B.1.1.529) variants in a highly susceptible feline model of infection. While D614G- and Delta-inoculated cats became lethargic, and showed increased body temperatures between days 1 and 3 post-infection (pi), Omicron-inoculated cats remained subclinical and, similar to control animals, gained weight throughout the 14-day experimental period. Intranasal inoculation of cats with D614G- and the Delta variants resulted in high infectious virus shedding in nasal secretions (up to 6.3 log10 TCID50.ml-1), whereas strikingly lower level of viruses shedding (<3.1 log10 TCID50.ml-1) was observed in Omicron-inoculated animals. In addition, tissue distribution of the Omicron variant was markedly reduced in comparison to the D614G and Delta variants, as evidenced by in situ viral RNA detection, in situ immunofluorescence, and quantification of viral loads in tissues on days 3, 5, and 14 pi. Nasal turbinate, trachea, and lung were the main - but not the only - sites of replication for all three viral variants. However, only scarce virus staining and lower viral titers suggest lower levels of viral replication in tissues from Omicron-infected animals. Notably, while D614G- and Delta-inoculated cats had severe pneumonia, histologic examination of the lungs from Omicron-infected cats revealed mild to modest inflammation. Together, these results demonstrate that the Omicron variant BA.1.1 is less pathogenic than D614G and Delta variants in a highly susceptible feline model.


Subject(s)
Pneumonia , COVID-19 , Inflammation
9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.14.472547

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 19 (COVID-19) in humans, has a broad host range, and is able to infect domestic and wild animal species. Notably, white-tailed deer (WTD, Odocoileus virginianus ) the most widely distributed cervid species in the Americas was shown to be highly susceptible to SARS-CoV-2 with reported natural infection rates approaching 40% in wild WTD populations in the U.S. Thus, understanding the infection and transmission dynamics of SARS-CoV-2 in WTD is critical to prevent future zoonotic transmission to humans and for implementation of effective disease control measures. Here, we demonstrated that following intranasal inoculation with SARS-CoV-2, deer fawns shed infectious virus up to day 5 post-inoculation (pi), with high viral loads shed in nasal and oral secretions. This resulted in efficient deer-to-deer transmission on day 3 pi. Consistent with lack of infectious SARS-CoV-2 shedding after day 5 pi, no transmission was observed to contact animals added on days 6 and 9 pi. We have also investigated the tropism and sites of SARS-CoV-2 replication in WTD. Active virus replication was observed in respiratory-, lymphoid-, and central nervous system tissues, indicating broad tissue tropism and multiple target sites of virus replication during acute infection. The study provides important insights on the infection and transmission dynamics of SARS-CoV-2 in WTD, a wild animal species that is highly susceptible to infection and with the potential to become a reservoir for the virus in the field.


Subject(s)
Coronavirus Infections , Acute Disease , Severe Acute Respiratory Syndrome , COVID-19
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.13.21266305

ABSTRACT

In the present study, we assessed the diagnostic sensitivity and determined the viral load and infectivity of SARS-CoV-2 in paired respiratory (nasopharyngeal and anterior nares) and oral samples (saliva and sublingual swab). Samples were collected from 77 individuals of which 75 were diagnosed with COVID-19 and classified as symptomatic (n=29), asymptomatic (n=31), or post-symptomatic (n=15). Specimens were collected at one time point from each individual, between day 1 to 23 after the initial COVID-19 diagnosis, and included self-collected saliva (S), or sublingual (SL) swab, and bilateral anterior nares (AN) swab, followed by healthcare provider collected nasopharyngeal (NP) swab. Sixty-three specimen sets were tested using five assay/platforms. The diagnostic sensitivity of each assay/platform and specimen type was determined. Of the 63 specimen sets, SARS-CoV-2 was detected in 62 NP specimens, 52 AN specimens, 59 saliva specimens, and 31 SL specimens by at least one platform. Infectious SARS-CoV-2 was isolated from 21 NP, 13 AN, 12 saliva, and one SL specimen out of 50 specimen sets. SARS-CoV-2 isolation was most successful up to 5 days after initial COVID-19 diagnosis using NP specimens from symptomatic patients (16 of 24 positives, 66.67%), followed by specimens from asymptomatic patients (5 of 17 positives, 29.41%), while it was not very successful with specimens from post-symptomatic patients. Benefits of self-collected saliva and AN specimens balance the loss of sensitivity relative to NP specimens. Therefore, saliva and AN specimens are acceptable alternatives for symptomatic SARS-CoV-2 diagnostic testing or surveillance with increased sampling frequency of asymptomatic individuals.


Subject(s)
COVID-19 , Sublingual Gland Neoplasms
11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.16.456510

ABSTRACT

Susceptibility to SARS-CoV-2 and the outcome of COVID-19 have been linked to underlying health conditions and the age of affected individuals. Here we assessed the effect of age on SARS-CoV-2 infection using a ferret model. For this, young (6-month-old) and aged (18-to-39-month-old) ferrets were inoculated intranasally with various doses of SARS-CoV-2. By using infectious virus shedding in respiratory secretions and seroconversion, we estimated that the infectious dose of SARS-CoV-2 in aged animals is [~]32 plaque forming units (PFU) per animal while in young animals it was estimated to be [~]100 PFU. We showed that viral replication in the upper respiratory tract and shedding in respiratory secretions is enhanced in aged ferrets when compared to young animals. Similar to observations in humans, this was associated with higher expressions levels of two key viral entry factors - ACE2 and TMPRSS2 - in the upper respiratory tract of aged ferrets.


Subject(s)
COVID-19
12.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-618448.v1

ABSTRACT

We report three cases of SARS-CoV-2 lineage B.1.1.7 infection in Malayan tigers at the Virginia Zoo. All three animals exhibited respiratory signs. These findings show the mutations in the B.1.1.7 lineage did not affect the susceptibility of tigers to SARS-CoV-2. 

13.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-440343.v1

ABSTRACT

Transmission of SARS-CoV-2, the virus that causes COVID-19, from people to companion animals has been reported globally. Between March 2020 and January 2021, the United States reported 94 companion animals with SARS-CoV-2. While most animals with SARS-CoV-2 have mild illness, 10 animals (5 dogs, 5 cats) died around the time of SARS-CoV-2 diagnosis. In one dog, histopathologic changes suggest SARS-CoV-2 exacerbated a severe chronic respiratory disease and contributed to death. In one cat, SARS-CoV-2 was associated with histopathologic changes suggesting the virus caused clinical signs that resulted in euthanasia. In the remaining eight animals, SARS-CoV-2 infection was an incidental finding (4 dogs, 4 cats). This report provides evidence that in rare circumstances, SARS-CoV-2 can contribute to or cause death in companion animals with underlying conditions. 


Subject(s)
COVID-19
14.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-406297.v1

ABSTRACT

Coronavirus disease 19 (COVID-19), has claimed millions of human lives worldwide since the emergence of the zoonotic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China in December 2019. Notably, most severe and fatal SARS-CoV-2 infections in humans have been associated with underlying clinical conditions, including diabetes, hypertension, and heart diseases. Here we describe a case of severe SARS-CoV-2 infection in a domestic cat (Felis catus) that presented with hypertrophic cardiomyopathy (HCM), a chronic heart condition that has been described as a comorbidity of COVID-19 in humans and that is prevalent in domestic cats. The lung and heart of the affected cat presented clear evidence of SARS-CoV-2 replication, with histological lesions similar to those observed in humans with COVID-19 with high infectious viral loads being recovered from these organs. The study highlights the potential impact of comorbidities on the outcome of SARS-CoV-2 infection in animals and provides important information that may contribute to the development of a feline model with the potential to recapitulate the clinical outcomes of severe COVID-19 in humans.  


Subject(s)
COVID-19
15.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.13.426628

ABSTRACT

The origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing the global coronavirus disease 19 (COVID-19) pandemic, remains a mystery. Current evidence suggests a likely spillover into humans from an animal reservoir. Understanding the host range and identifying animal species that are susceptible to SARS-CoV-2 infection may help to elucidate the origin of the virus and the mechanisms underlying cross-species transmission to humans. Here we demonstrated that white-tailed deer (Odocoileus virginianus), an animal species in which the angiotensin converting enzyme 2 (ACE2) - the SARS-CoV-2 receptor - shares a high degree of similarity to humans, are highly susceptible to infection. Intranasal inoculation of deer fawns with SARS-CoV-2 resulted in established subclinical viral infection and shedding of infectious virus in nasal secretions. Notably, infected animals transmitted the virus to non-inoculated contact deer. Viral RNA was detected in multiple tissues 21 days post-inoculation (pi). All inoculated and indirect contact animals seroconverted and developed neutralizing antibodies as early as day 7 pi. The work provides important insights into the animal host range of SARS-CoV-2 and identifies white-tailed deer as a susceptible wild animal species to the virus. IMPORTANCEGiven the presumed zoonotic origin of SARS-CoV-2, the human-animal-environment interface of COVID-19 pandemic is an area of great scientific and public- and animal-health interest. Identification of animal species that are susceptible to infection by SARS-CoV-2 may help to elucidate the potential origin of the virus, identify potential reservoirs or intermediate hosts, and define the mechanisms underlying cross-species transmission to humans. Additionally, it may also provide information and help to prevent potential reverse zoonosis that could lead to the establishment of a new wildlife hosts. Our data show that upon intranasal inoculation, white-tailed deer became subclinically infected and shed infectious SARS-CoV-2 in nasal secretions and feces. Importantly, indirect contact animals were infected and shed infectious virus, indicating efficient SARS-CoV-2 transmission from inoculated animals. These findings support the inclusion of wild cervid species in investigations conducted to assess potential reservoirs or sources of SARS-CoV-2 of infection.


Subject(s)
Coronavirus Infections , Infections , Severe Acute Respiratory Syndrome , Virus Diseases , COVID-19
16.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.14.250928

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) emerged as the cause of a global pandemic in 2019-2020. In March 2020 New York City became the USA epicenter for the pandemic. On March 27, 2020 a Malayan tiger (Panthera tigris jacksoni) at the Bronx Zoo in New York City developed a cough and wheezing with subsequent inappetence. Over the next week, an additional Malayan tiger and two Amur tigers (P. t. altaica) in the same building and three lions (Panthera leo krugeri) in a separate building also became ill. The index case was immobilized, and physical examination and bloodwork results were unremarkable. Thoracic radiography and ultrasonography revealed peribronchial cuffing with bronchiectasis, and mild lung consolidation with alveolar-interstitial syndrome, respectively. SARS-CoV-2 RNA was identified by real-time, reverse transcriptase PCR (rRT-PCR) on oropharyngeal and nasal swabs and tracheal wash fluid. Cytologic examination of tracheal wash fluid revealed necrosis, and viral RNA was detected in necrotic cells by in situ hybridization, confirming virus-associated tissue damage. SARS-CoV-2 was isolated from the tracheal wash fluid of the index case, as well as the feces from one Amur tiger and one lion. Fecal viral RNA shedding was confirmed in all seven clinical cases and an asymptomatic Amur tiger. Respiratory signs abated within 1-5 days for most animals, though persisted intermittently for 16 days in the index case. Fecal RNA shedding persisted for as long as 35 days beyond cessation of respiratory signs. This case series describes the clinical presentation, diagnostic evaluation, and management of tigers and lions infected with SARS-CoV-2, and describes the duration of viral RNA fecal shedding in these cases. This report documents the first known natural transmission of SARS-CoV-2 from humans to animals in the USA, and is the first report of SARS-CoV-2 in non-domestic felids.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL